Random Convolution Ensembles
نویسنده
چکیده
A novel method for creating diverse ensembles of image classifiers is proposed. The idea is that, for each base image classifier in the ensemble, a random image transformation is generated and applied to all of the images in the labeled training set. The base classifiers are then learned using features extracted from these randomly transformed versions of the training data, and the result is a highly diverse ensemble of image classifiers. This approach is evaluated on a benchmark pedestrian detection dataset and shown to be effective.
منابع مشابه
Spectral density of generalized Wishart matrices and free multiplicative convolution.
We investigate the level density for several ensembles of positive random matrices of a Wishart-like structure, W=XX(†), where X stands for a non-Hermitian random matrix. In particular, making use of the Cauchy transform, we study the free multiplicative powers of the Marchenko-Pastur (MP) distribution, MP(⊠s), which for an integer s yield Fuss-Catalan distributions corresponding to a product o...
متن کاملOptimization on Product Submanifolds of Convolution Kernels
Recent advances in optimization methods used for training convolutional neural networks (CNNs) with kernels, which are normalized according to particular constraints, have shown remarkable success. This work introduces an approach for training CNNs using ensembles of joint spaces of kernels constructed using different constraints. For this purpose, we address a problem of optimization on ensemb...
متن کاملAverage Characteristic Polynomials of Determinantal Point Processes
We investigate the average characteristic polynomial E [∏N i=1(z−xi) ] where the xi’s are real random variables drawn from a Biorthogonal Ensemble, i.e. a determinantal point process associated with a bounded finite-rank projection operator. For a subclass of Biorthogonal Ensembles, which contains Orthogonal Polynomial Ensembles and (mixed-type) Multiple Orthogonal Polynomial Ensembles, we prov...
متن کاملFully Point-wise Convolutional Neural Network for Modeling Statistical Regularities in Natural Images
Modeling statistical regularities is the problem of representing the pixel distributions in natural images, and usually applied to solve the ill-posed image processing problems. In this paper, we present an extremely efficient CNN architecture for modeling statistical regularities. Our method is based on the observation that, by random sampling the pixels in natural images, we can obtain a set ...
متن کاملSparse convolutional coding for neuronal ensemble identification
Cell ensembles, originally proposed by Donald Hebb in 1949, are subsets of synchronously firing neurons and proposed to explain basic firing behavior in the brain. Despite having been studied for many years no conclusive evidence has been presented yet for their existence and involvement in information processing such that their identification is still a topic of modern research, especially sin...
متن کامل